TAXONOMY OF LEARNING OBJECTIVES AT ELEMENTARY LEVEL

Mara Cotič
Darjo Felda
Amalija Žakelj

DOI: 10.46793/STEC20.335C

UDK: 37.015:159.953

Abstract: Looking for an answer to the question what knowledge represents the centre of gravity in teaching and learning and thus also in testing and assessing knowledge, as well as in the interpretation of students’ achievements taxonomies of learningobjectives for the cognitive area can be of assistance. In education sciences there are several taxonomies of cognitive knowledge (Bloom, Marzano, Gagne). Taxonomy is derived from basic cognitive – mental processes that are arranged in a hierarchic relationship, namely from the lowest – the simplest to the highest – the most complex process.

The present paper represents an introduction to Bloom’s, Gagne’s, and Marzano’s taxonomies. Bloom’s taxonomy is one of the best known classifications of learning objectives, where Bloom and associates have formed a taxonomy of cognitive, conative, and psycho-motoric learning objectives. In the cognitive area the following degrees have been defined: remembering, understanding, applying, analysing, synthesising, and evaluating. Gagne’s classification of knowledge classifies the achievements of learners into: basic and conceptual knowledge, procedural knowledge, and problem solving knowledge. Marzano’s taxonomy distinguishes between content and lifelong or process knowledge, which are further divided into complex thinking, data processing, communication, cooperation in the group, and development of mental habits.

Keywords:taxonomy, Marzano’s taxonomy, Bloom’s taxonomy, Gagne’s classification of knowledge, knowledge testing.

References:

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J.&Wittrock, M. C. (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Boston: Allyn & Bacon.

Cotič, M. (2010). Vrednotenje matematičnega znanja in objektivnost učiteljeve ocene. Didactica Slovenica: časopis za didaktiko in metodiko, 25(1), 39–54.

Cotič, M. & Žakelj, A. (2004). Gagnejeva taksonomija pri preverjanju in ocenjevanju matematičnega znanja. Sodobna pedagogika, 55(1), 182–192.

Felda, D. & Bon Klanjšček, M. (2017). Teaching Statistics in the Background of Teaching Mathematics. The New Educational Review, 48(2), 65–75.

Hargreaves, A. (2005). Extending educational change. New York: Springer, cop.

Kmetič, S. (1996). Prispevki k poučevanju matematike. Maribor: Rotis.

Kluger, A. N. & DeNisi, A. (1996). The Effects of Feedback Interventions on Performance: a Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory. Psychological Bulletin, 119(2), 254–284.

RutarIlc, Z. (2006). Didaktična prenova gimnazijali kako pod pretišole pri tem, da bododijake pripravljalena »jutrišnje« probleme. In M. Turk Škraba (ed.): Vpeljevanje sprememb v šole – konceptualni vidiki. Ljubljana: Zavod Republike Slovenije za šolstvo.

RutarIlc, Z. (2002). Aktivni učenec: zakaj in kako?. In A. Zupan (ed.): Modeli poučevanja in učenja. Zbornik prispevkov (10–17). Ljubljana: Zavod RS za šolstvo.

Valenčič Zuljan, M. i Kalin, J. (2007). Učitelj – temeljni dejavnik v procesu inoviranja pedagoške prakse. Sodobna pedagogika, 58(2),162–179. 

Wiliam, D. (2013). Vloga formativnega vrednotenja v učinkovitih učnih okoljih. V: Sentočnik, S. (ur.), O naravi učenja. Ljubljana: ZRSŠ.

Žakelj, A. (2003). Kako poučevati matematiko. Teoretična zasnova modela in njegova didaktična izpeljava. Ljubljana: Zavod Republike Slovenije za šolstvo.